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We calculate numerically the optical chiral forces in rectangular cross-section dielectric waveguides for potential
enantiomer separation. Our study considers force strength and time needed for separating chiral nanoparticles,
mainly via quasi-TE guided modes at short wavelengths (405 nm) and the 90°-phase-shifted combination of
quasi-TE and quasi-TM modes at longer wavelengths (1310 nm). Particle tracking simulations show successful
enantiomer separation within two seconds. These results suggest the feasibility of enantiomeric separation of
nanoparticles displaying sufficient chirality using simple silicon photonic integrated circuits, with wavelength
selection based on the nanoparticle size. © 2024 Chinese Laser Press

https://doi.org/10.1364/PRJ.509634

1. INTRODUCTION

Separation of enantiomers from racemic mixtures is essential in
fields such as chemistry and pharmaceutics since the required
performance is only exhibited by an enantiomer with a certain
handedness (or chirality). Usually, methods based on chemical
interactions, such as chiral high-performance liquid chromatog-
raphy (HPLC), are employed to separate enantiomers starting
from racemic mixtures. However, such chemical methods are
usually slow, expensive, and molecule-dependent [1]. An inter-
esting alternative would be the use of optical chiral forces [2]:
since the chiral force exerted by light changes its sign when act-
ing on enantiomers of different handedness [3], it could ulti-
mately lead to light-driven enantiomeric separation overcoming
many of the limitations of chemical methods.

There have been many recent theoretical and simulation
works addressing the separation of enantiomers using light
[4–10]. Indeed, there have been several experiments demon-
strating optically induced separation, though for relatively large
nanoparticles and nanostructures [11–13]. In all cases, free-
space propagating beams are used, either being reflected at
dielectric interfaces [5] or interfering with other beams [7] to
produce the transverse optical spin that generates the required
forces. Alternatively, one may think of using guided light for
separation purposes, taking advantage of the enhancement of
chiral interaction because the light is confined in subwave-
length cross-sections over relatively long distances (ideally in-
finite for a lossless waveguide). One possibility is the use of

optical nanofibers with cylindrical cross-sections, as recently
noticed by Golat et al. [14]. Another possibility would be
the use of dielectric waveguides that can be created by lithog-
raphy in photonic integrated circuits (PICs) and can exhibit
either transverse [15] or longitudinal spin [16] for guided
modes. Remarkably, such waveguides can be massively inte-
grated into PICs and, in the case of silicon-related materials,
fabricated in large volumes using low-cost processes. Recently,
several approaches to separate enantiomers using integrated
waveguides have been presented [17–19]. However, in all of
them, the separating chiral forces are not kept over long propa-
gation distances, just missing this clear advantage of PICs over
free-space approaches.

In this work, we analyze the chiral separation properties of
the simplest photonic integrated structure: a lossless dielectric
waveguide with a rectangular cross-section on a lower-index
substrate. We consider silicon nitride (SiN) as the material to
build the waveguide core since it is transparent from telecom
wavelengths down to the ultraviolet. The refractive index of
SiN is large enough to ensure tight guiding when the core lies
on a silicon dioxide substrate and is surrounded by water.
Remarkably, waveguides with very low propagation loss
(<1 dB∕cm) can be fabricated using mature tools and proc-
esses [20]. We first calculate the order of magnitude of the re-
quired chiral forces to perform the enantiomeric separation of
particles under a reasonable time assuming Brownian diffusion
of the target particles in a liquid environment. Then, we cal-
culate numerically the electric and magnetic fields at different
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wavelengths from 405 to 1310 nm to obtain the optical forces
using well-established equations [14]. We show that at short
wavelengths (405 nm) lateral chiral forces arising from the
transversal spin of the guided quasi-TE mode [15] can over-
come the achiral forces and be used for separation of chiral par-
ticles of 80 nm radius. At longer wavelengths (1310 nm), this
lateral force becomes much smaller but we combine the quasi-
TE and quasi-TM modes of the waveguide with a proper 90°
phase shift between them to generate a quasi-circularly polar-
ized (quasi-CP) mode [16]. This mode produces a large trans-
versal chiral gradient force that could separate nanoparticles of
52 nm radius and potentially molecules with a size of the order
of 1 nm. Our results suggest that long SiN waveguides are sim-
ple but realistic structures towards achieving enantiomeric sep-
aration within seconds using guided light in PICs.

2. OPTICAL FORCES EXERTED ON SMALL
CHIRAL PARTICLES

The electromagnetic field of light carries momentum that can
be transferred to a particle through the action of an optical
force, and consequently, cause its motion. In this work, we re-
strict to study the motion of small chiral particles (whose size is
smaller than the wavelength of light) subjected to optical forces.
A small particle is fully characterized by its electric dipole mo-
ment, p, which can be thought of as the separation of positive
and negative charges, and its magnetic dipole moment, m,
which represents the overall current loop within the particle.
The time-averaged force F that the electromagnetic field exerts
on a small particle is [5,14,21,22]

F � 1

2
ℜ

�
�∇ ⊗ E�p� � μ�∇ ⊗ H �m�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

interaction

−
k4η
6π

�p� ×m�|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
recoil

�
:

(1)

In this expression, E andH are, respectively, the electric and
the magnetic fields at the position of the particle, η �

ffiffiffiffiffiffiffiffi
μ∕ε

p
is

the impedance of the surrounding medium, ε is the electric
permittivity of the medium, μ is the magnetic permeability
of the medium, k � 2π∕λ is the wavenumber, and λ is the
wavelength of light. The dipole moments of a particle arise
due to its interaction with the electric and magnetic fields of
light, and are obtained as follows:

p � αeεE � i
1

c
αcH ,

m � αmH − i
1

η
αcE , (2)

where �αe , αm, αc� are the dynamic electric, magnetic, and chi-
ral polarizabilities of the particle, and c � 1∕ ffiffiffiffiffi

με
p

is the speed
of light in the medium. The static polarizabilities of a spherical
particle of radius r can be modeled using the generalized
Clausius-Mossotti expressions [2,6]

α0e � 4πr3
�εp − εm��μp � 2μm� − κ2
�εp � 2εm��μp � 2μm� − κ2

,

α0m � 4πr3
�εp � 2εm��μp − μm� − κ2
�εp � 2εm��μp � 2μm� − κ2

,

α0c � 12πr3
κ

�εp � 2εm��μp � 2μm� − κ2
, (3)

where �εp, μp, κ� refer to the relative permittivity, relative per-
meability, and chirality parameter of the particle as defined by
the constitutive relations D � ε0εpE � iκH∕c and B �
−iκE∕c � μ0μpH , and �εm, μm� refer to the relative permittiv-
ity and permeability of the non-chiral background medium. A
radiation damping has to be added to the expressions in Eq. (3)
to satisfy the conservation of energy [23,24]. This so-called ra-
diative correction is often applied incorrectly in the literature
for chiral particles, because it is only applied to the electric and
magnetic polarizabilities, thus, neglecting the correction for the
chiral polarizability. However, as shown by Belov et al. [23] and
Sersic et al. [24], the tensor radiative correction has to be ap-
plied to the full 6 × 6 square polarizability matrices, yielding the
following expressions for the dynamic polarizabilities [14],
which are used for calculating the dipole moments in
Eq. (2):

αe �
α0e − i k

3

6π �α20c − α0eα0m�
1�

�
k3
6π

�
2�α20c − α0eα0m� − i k

3

6π �α0e � α0m�
,

αm � α0m − i k
3

6π �α20c − α0eα0m�
1�

�
k3
6π

�
2�α20c − α0eα0m� − i k

3

6π �α0e � α0m�
,

αc �
α0c

1�
�
k3
6π

�
2�α20c − α0eα0m� − i k

3

6π �α0e � α0m�
: (4)

With Eqs. (1)–(4) we are ready to compute the time-averaged
optical force due to a monochromatic electromagnetic field on a
small particle. However, we gain more insight by developing the
expression of the force from Eq. (1). The force can be split into
several terms that depend on the following six time-averaged lo-
cal field properties: electric energy densityW e, magnetic energy
density Wm, helicity density G, electric spin density S e, mag-
netic spin density Sm, and complex Poynting vector Π:

W e �
1

4
εjE j2

�
J

m3

�
,

Wm � 1

4
μjH j2

�
J

m3

�
,

G � 1

2ωc
J�E ·H ��

�
J · s
m3

�
,

S e �
1

4ω
J�εE� × E�

�
J · s
m3

�
,

Sm � 1

4ω
J�μH � ×H �

�
J · s
m3

�
,

Π � 1

2
E ×H �

�
W

m2

�
: (5)
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The fully developed expression of the optical force acting on
a particle is shown below, which has been split into the chiral
and achiral terms, depending on whether the terms are a func-
tion of the chiral polarizability or not, respectively [14]:

F chiral � ωℜ�αc�∇G|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
helicity gradient

−
1

c
J�αc�∇ ×ℜΠ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

vortex

�
�
2kJ�αc� −

k4

3π
ℜ�α�e αc�

	
ωSe|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

electric spin

�
�
2kJ�αc� −

k4

3π
ℜ�α�c αm�

	
ωSm|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

magnetic spin

,

F achiral � ℜ�αe�∇W e|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
electric gradient

�ℜ�αm�∇Wm|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
magnetic gradient

− ω∇ × �J�αe�Se � J�αm�Sm�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
spin−curl

�
�
k
c
J�αe � αm� −

k4

6π

1

c
�ℜ�α�e αm� � jαc j2�

	
ℜΠ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

radiation pressure

−
k4

6π

1

c
J�α�e αm�JΠ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

flow

, (6)

where the name for each force term has been taken from the
literature [25–27]. All the forces exhibit an inherent depend-
ency on the volume of the particle because the polarizabilities
are proportional to r3. In addition, some of the forces show
explicit dependency on the wavelength (or wavenumber)
too, being proportional to r3∕λ or r6∕λ4, such as the electric
and magnetic spin forces and radiation pressure force, whereas
others, such as the gradient forces, do not. Therefore, the domi-
nance of chiral forces over achiral forces varies depending on
particle size and wavelength. A more detailed analysis of the
chiral and achiral optical forces exerted on small chiral particles
is discussed by Golat et al. [14].

3. OPTICALLY DRIVEN MOTION OF SMALL
CHIRAL PARTICLES IN A FLUID

To study under what circumstances the optical enantiosepara-
tion is possible, we first need to examine the motion of particles
in a fluid under the influence of an external chiral optical force
field. To this end, we consider the following assumptions for
this system: there is no net fluid flow, and the mass of the par-
ticles is negligible so that the viscous forces dominate the in-
ertial forces. Under these considerations, the motion of the
particle is driven by a combination of the external optical force,
F , the friction or drag force due to the viscosity of the fluid
(which is opposite to the movement of the particle), and the
force arising from the stochastic collisions of the smaller fluid
molecules with the particle (Brownian motion). The variation
of the particle position, x�t�, with time is governed by the over-
damped Langevin equation [28–30]

0 � − γ
dx
dt|{z}

friction

� F|{z}
optical

� γ
ffiffiffiffiffiffi
2D

p
ξ�t�|fflfflfflfflfflffl{zfflfflfflfflfflffl}

stochastic

, (7)

where D � kBT ∕γ � MkBT is the particle’s diffusion coeffi-
cient within the bulk of the fluid, kB is the Boltzmann constant,
T is the absolute temperature, γ is the friction coefficient, and

M is the mobility coefficient of the particle. Under the
assumption that the particles have spherical shapes of radius r,
the friction coefficient can be expressed as γ � 6πηr � 1∕M
(Stoke’s law of friction), where η is the dynamic viscosity of the

fluid. Equation (7) is a stochastic differential equation that can
be solved numerically with the Euler-Maruyama integration
scheme to track the location of the particle upon an increment
in time Δt [31,32]. The solution can be expressed as

x�m�1� � x�m� �M�m�
x,⊥F

�m�
x Δt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�m�

x,⊥kBTΔt
q

Nx�0,1�,

y�m�1� � y�m� �M�m�
y,⊥F

�m�
y Δt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�m�

y,⊥ kBTΔt
q

Ny�0,1�,

z�m�1� � z�m� �M�m�
z,jj F

�m�
z Δt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�m�

z,jj kBTΔt
q

Nz�0,1�,
(8)

where the upper index �m� represents the mth instant of time,
and Nx∕y∕z�0,1� represent three independent standard normal
distributions with 0–mean and 1–variance. The force field
�F �m�

x , F �m�
y , F �m�

z � and the mobility coefficients are evaluated
at the location of the particle (x�m�, y�m�, z�m�). The mobility
coefficients are modified with respect to their bulk value M
as the particle moves near a boundary, such as the interface
of the fluid with the waveguide or the walls of a microfluidic
channel. This modification depends on whether the movement
of the particle is perpendicular or parallel to the boundary [33].
Equation (8) is used in Section 5 to follow the trajectories of
individual particles throughout a microfluidic channel sub-
jected to the force field exerted by the waveguide mode.
More details about the equation of motion and modification
on the mobilities are given in Appendix A.

The magnitude of the chiral optical forces required for enan-
tiomeric separation and the needed sorting time can be esti-
mated upon further assumptions. For that we examine the
movement of a cloud of particles under the influence of an ex-
ternal optical force field in the bulk, i.e., in an infinite system
with no boundaries. We followed the derivation from Kravets
et al. [28]. The enantiomers are modeled as non-interacting
spherical particles and are assumed to be initially mixed and
distributed within a spherical cloud of diameter L0, as shown
in Fig. 1(a). Let us assume the optical force field is uniform
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in space, constant in time, oriented along the x–direction, and
dominantly chiral, i.e., the achiral part of the force is negligible
compared to the chiral part (F � jF chiralj ≫ jF achiralj). The
chiral optical force F exerted on the particles moves each enan-
tiomer in opposite directions, thus effectively separating the
initial racemic mixture into two separate clouds of particles.
Upon an interval of time t, each enantiomer cloud is displaced
a distance d opt � Ft∕γ due to the optical force. In addition to
this displacement, the radius for each enantiomer cloud is ex-
pected to increase on average dB � ffiffiffiffiffiffiffiffi

2Dt
p

due to Brownian
motion. These two simultaneous processes of motion are sche-
matized in Fig. 1(a). The condition to achieve a separation Δx
between the two clouds within a sorting time t sort gives rise to
the following equation whose derivation is shown in detail in
Appendix B:

t sort � 3πηkBT
r
F 2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F �L0 � Δx�

kBT

s !2

: (9)

In the integrated waveguide system, the particles flow along a
microfluidic channel, and the force field is generated by a wave-
guide. Thus, the actual force field is not spatially uniform and
there are boundaries that enclose the region of space where the
particles can move and that modify the mobility coefficient value.
However, Eq. (9) provides a quite accurate estimation of the
sorting time for a longitudinally invariant dielectric waveguide-
microchannel system. We assume the initial extension of the rac-
emic mixture cloud is L0 � 1 μm. This is achievable with the
well-known microfluidics technique called hydrodynamic flow
focusing [34], where two lateral flows can control the width of
the middle fluid channel where the particles are suspended. The
fluid is composed mainly of water at temperature T � 293 K so
the dynamic viscosity is η� 10−3 Pa · s [28].

Figure 1(b) shows the sorting time for particles of different
radii, calculated with Eq. (9) for Δx � 0, which marks the
starting point of separation. Stronger forces are needed to sort
larger particles for the same value of sorting time. Moreover,
larger particles take longer to be sorted for the same value of the
force. We emphasize that this sorting time is obtained for a

force field that is constant in time and uniform in space, which
is not the actual situation of the force field generated by a wave-
guide system. In the latter case, the forces are stronger at dis-
tances closer to the waveguide and decay with the distance due
to the evanescent field of the mode in the fluid. The usefulness
of this graph is to know what range of optical force magnitude
the waveguide system needs to generate to sort particles under a
reasonable time: 1 ms to few hours. We must therefore look for
integrated waveguides that generate optical chiral forces within
the range of 10−3 fN to 103 fN for sorting particles of radii
between 1 and 1000 nm. Once we have designed those wave-
guide systems, we use the particle tracking algorithm [Eq. (8)]
to test the actual enantiomeric separation that our waveguides
can reach.

4. DESCRIPTION OF THE INTEGRATED
PHOTONIC WAVEGUIDE

We consider a photonic strip waveguide made with a SiN core
(refractive index n ≈ 2) on top of a SiO2 �n � 1.4468� sub-
strate, and surrounded by water �n � 1.33� as the system that
produces the force field responsible for the enantiomeric sort-
ing, as shown in Fig. 2(a). The use of SiN has several practical
advantages such as transparency at visible and near-infrared
wavelengths, a relatively large refractive index to ensure tight
localization of the fields in the waveguide core, and its process-
ing with a mature silicon technology to produce low-loss wave-
guides [20]. Moreover, SiN is particularly appropriate for
applications requiring immersion in fluid, such as photonic
biosensing [35].

In order to obtain the electric and magnetic fields of the
guided modes, the Maxwell’s equations are solved in the wave-
guide using the finite element method implemented by the
FemSIM solver in the commercial software RSoft (Synopsis).
The software computes the eigenmode of the cross-section of
the waveguide system, which is assumed to be invariant along
the longitudinal direction (translational symmetry along the
optical axis, i.e., z–axis). The resulting electric and magnetic
fields are plugged into Eq. (6) to obtain the optical forces per
amount of power guided by the mode. We assume 20 mW of

10-2 100 102

F [fN]

100

10

S
or

tin
g 

tim
e 

[s
]

1 s

1 min

1 hour
1 day

1 nm
10 nm
100 nm
1000 nm

2

10-2

104

L0

L0/2  + dB L0/2  + dB

Δx

2dopt

tsort

(a) (b)

1 ms

Fig. 1. (a) Schematic showing the combined action of the translation of the cloud of enantiomers due to the optical force (d opt) and the increase in
the cloud size due to Brownian motion (dB). After a sorting time (t sort), the clouds are separated by a distance of Δx. Schematic adapted from
Ref. [28]. (b) Sorting time of the enantiomer clouds as a function of the modulus of the separating optical force. Particles of different radii display
different sorting time curves, from 1 to 1000 nm.
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power in our simulations, which, despite being a high power
level for integrated optics, can be attained using a standard
semiconductor continuous wave laser without causing material
damage. Noticeably, the forces depend on the characteristics of
the particle, which are modeled by the polarizabilities [Eqs. (3)
and (4)]. The particle’s material is modeled with a relative per-
mittivity of εp � 2, relative permeability μp � 1, and chirality
parameter κ � �0.5. These values have been widely used to
characterize chiral nanoparticles in the literature [5,36]. The
medium (water) is modeled with the values εm � 1.77 and
μm � 1. We take into account the following two design criteria
for the waveguide system towards favoring enantiomeric sepa-
ration: (i) jF chiralj > jF achiralj, to ensure that chiral forces domi-
nate achiral ones (although it is not a necessary condition for
achieving separation); and (ii) jF chiralj ∼ 10−3 fN to 103 fN,
according to our calculations from Fig. 1.

After the total optical force field is computed, we use
the particle tracking algorithm to track the position of an indi-
vidual particle for each enantiomer for 2 s throughout a hypo-
thetical microfluidic channel surrounding the waveguide. Due
to the stochastic nature of the Brownian motion, we repeat
this tracking 500 times to do a statistical analysis of the

enantioseparation process. In addition, the initial �x, y� posi-
tions of the particles were randomized to account for the real-
istic scenario of not being able to precisely control their starting
positions within the microchannel. The initial x–position was
uniformly randomized at x � 0� 0.5 μm, which is achievable
with hydrodynamic flow focusing as commented before [34],
and the initial y–position was uniformly randomized through-
out the microchannel height. From the final position of the
particles we calculate the enantiomer fraction (EF) for each
enantiomeric cloud. More details about the particle tracking
algorithm and statistical analysis can be found in Appendix A.

5. RESULTS

We consider two different approaches to sorting chiral nano-
particles throughout the transversal plane (xy–plane) around
the waveguide: the fundamental quasi-transverse electric mode
(quasi-TE mode) for horizontal sorting and a quasi-circularly
polarized mode (quasi-CP mode) for attractive-repulsive sort-
ing. The electric field intensity and polarization of the quasi-TE
mode and the quasi-CP mode are plotted in Fig. 2(b). A more
detailed decomposition of the electric and magnetic fields for

Fig. 2. (a) Schematic of the waveguide cross-section representing the opposite action of the total optical force exerted by the guided mode (in red)
onto particles with opposed chirality. (b) Transversal electric field intensity (in color map) and polarization (in arrow or ellipse map) of the quasi-TE
mode and of the quasi-CP mode. The handedness of the polarization ellipses does not change its sign throughout the cross-section. (c) Net chiral and
achiral force along the x–direction that a quasi-TE mode in a SiN strip waveguide exerts on a particle, depending on its size. This is calculated for
three different SiN waveguides, each one operating at a different wavelength: 405 nm, 780 nm, or 1310 nm. The SiN cross-section sizes
(width × thickness) of the waveguides are: 0.151 μm × 0.139 μm (for λ � 405 nm), 0.292 μm × 0.268 μm (for λ � 780 nm), and 0.495 μm ×
0.45 μm (for λ � 1310 nm). (d) Net transversal chiral and achiral forces that a quasi-CP mode in a strip waveguide exerts on a particle depending on
the particle size. (e) Cross-section of the strip waveguide showing the position where the forces are evaluated for (c) and (d): at a vertical distance over
the top of the waveguide equal to the radius of the particle, and at a horizontal distance equal to the fourth of the waveguide width from the center of
the waveguide. The calculated forces are expected to be more accurate for particles whose size is smaller than the wavelength. This upper bound is
∼150 nm, 290 nm, and 490 nm for λ � 405 nm, 780 nm, and 1310 nm, respectively.
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the quasi-TE, quasi-TM, and quasi-CP modes can be found in
Appendix C.

A. Quasi-TE Mode
The fundamental quasi-TE mode (or TE0) in a strip waveguide
is characterized by the transverse electric field mainly pointing
along the horizontal plane (x–axis) and the transverse magnetic
field mainly polarized along the vertical plane (along y–axis).
This guided mode exhibits a non-zero longitudinal component
of the electric and magnetic fields due to confining the wave
inside a waveguide. The longitudinal component oscillates
out-of-phase in comparison with the transversal components.
This results in a transverse spin [15], which can be interpreted
as the quantum spin Hall effect of light [37] and gives rise to
transversal chiral forces.

The optical forces that a quasi-TE mode exerts on a particle
are computed for a wavelength of 405 nm and a particle radius
of 80 nm. The field properties that are responsible for the dom-
inant transversal forces in this system are the electric energy
densityW e, the magnetic energy densityWm, and the magnetic
spin Sm. These field properties, together with their respective
forces, are plotted in Fig. 3. The electric gradient force attracts
any particle toward the sidewalls of the waveguide, whereas the
magnetic gradient force repels any particle from the top of the
waveguide. The magnetic spin force moves the ���-particles
towards the left and the �−�-particles towards the right.
Over the top of the waveguide, the achiral gradient electric
and gradient magnetic forces have opposite directions, thus
reducing the strength of the total achiral force. That is why
the chiral force magnitude (∼2.95 fN∕mW) is of the same or-
der as the total achiral force (∼5.59 − 5.03 � 0.56 fN∕mW),
resulting in the total force along the x–axis changing sign for
opposite enantiomers over the top of the waveguide, thus,
pushing enantiomers to opposite sides along the x–direction.
The motion of 500 particles per enantiomer is tracked indi-
vidually for 2 s given the total optical force field shown in
Fig. 3. The microchannel dimensions (width × height) are
3 μm × 0.35 μm. The resulting final positions of the particles
are plotted in Fig. 3 for both enantiomers. From among the
500 (�)-particles 66.2% end up on the left side (x < 0) and
65.6% of �−�-particles end up on the right side (x > 0), yield-
ing an enantiomer fraction (EF) of 65.8% and 66.0%, respec-
tively. The (�)-EF is calculated within the region x < 0 and
the �−�-EF is calculated within the region x > 0.

Away to increase the strength of chiral forces over the achiral
forces is by exploiting the wavelength dependency of the forces.
Some of the forces depend on the ratio r∕λ, as previously dis-
cussed for Eq. (6). This dependency is studied in Fig. 2(c) for
the quasi-TE mode, where the total chiral and achiral forces
along x–direction, which is the sorting direction, are repre-
sented with respect to the particle radius for three wavelengths
(405 nm, 780 nm, and 1310 nm). The calculated forces are
expected to be more accurate for particles whose size is smaller
than the wavelength: 2r < λ∕nwater due to the dipolar approxi-
mation assumption [38]. This upper bound is ∼150 nm,
290 nm, and 490 nm for λ � 405 nm, 780 nm, and
1310 nm, respectively. In all the cases, the forces are evaluated
at a point positioned at a vertical distance equal to the particle’s
radius over the top of the waveguide and at a horizontal

distance equal to 1/4 of the waveguide’s width from the center,
as shown in the inset in Fig. 2(e). That vertical distance is the
minimum distance the particle can be placed due to its size.
Figure 2(c) shows that there is a particle size range over which
chiral forces become larger than achiral forces along the x–di-
rection: 65–132 nm for λ � 405 nm, 123–257 nm for
λ � 780 nm, and 204–378 nm for λ � 1310 nm. In fact,
there is a specific radius that maximizes the ratio of chiral force
over achiral force within those intervals. In these ranges, the
spin magnetic force is stronger than the other achiral forces
along the x–direction. However, for smaller radii, the achiral
magnetic gradient becomes dominant, and for larger radii,
the sum of the achiral flow force due to the imaginary part
of the Poynting vector and the achiral magnetic gradient be-
comes dominant instead. In addition, these intervals suggest
that operating at shorter wavelengths is more suitable for sort-
ing smaller chiral particles.

Another way to facilitate the horizontal chiral separation is
to lower the strength of the achiral gradient forces along the x–
axis. This can be achieved by making the waveguide wider. The
power is thus spread over a larger area, thereby reducing the
gradient of the fields and their respective achiral gradient forces
along the x–axis. In addition, the smallest particle size for
which chiral and achiral forces have the same magnitude
reduces down to 28 nm for λ � 405 nm. This comes at the
expense of reducing the strength of the chiral optical force
too (∼0.469 fN∕mW), as shown in Fig. 4 for a waveguide
2.27 μmwide × 0.139 μm thick, since the power of the mode
has been distributed over a larger cross-section. The particle
tracking simulation inside a microchannel of the same dimen-
sions as before (3 μmwide × 0.35 μm thick) yielded values of
EF of 60.6%/60.2% for the ���∕�−�-enantiomers, which are
somewhat smaller when compared with the narrower wave-
guide despite the magnitude of the forces being one order
of magnitude less. This might be because the wider waveguide
allows the interaction between the particle and optical force for
a longer time because the waveguide width is larger. In spite of
yielding similar enantiomeric separation capability, this wider
configuration should be easier to implement experimentally
due to the larger area of interaction between the mode and
the particles.

B. Quasi-CP Mode
We refer to the quasi-CP mode as a guided mode that is ob-
tained by the superposition of the TE0 mode and the TM0

mode delayed by a phase shift of 90°. As the electric field is
predominantly horizontally polarized in the TE0 mode and
predominantly vertically polarized in the TM0 mode, the com-
bination originates a guided mode with an effective circular
polarization and, therefore, local helicity [16]. The waveguide
width and thickness are chosen so that the TE0 mode and the
TM0 mode are degenerate, i.e., both modes exhibit the same
effective refractive index (Δn � nTE − nTM � 0) at the target
wavelength. This degeneracy allows the circular polarization of
the mode to be maintained along the waveguide.

We compute the dominant achiral and chiral forces of this
system for a particle of 52 nm radius and a wavelength of
1310 nm (see Fig. 5). The field of the quasi-CP mode exhibits
an intrinsic local helicity G, which naturally diminishes along
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the evanescent field beyond the waveguide core. This is a robust
way of achieving a helicity gradient, which is in fact the pre-
dominant chiral force in this system. This force is particularly
interesting because it depends only on the chiral polarizability,
which means that it grows with the radius of the particle as r3

instead of r6, and does not depend explicitly on the wavelength.
The total optical force exhibits opposite directions for opposite

chiralities, being attractive towards the waveguide for the
(�)-particles (with value ∼3.29 fN∕mW) and repulsive for
the (–)-particles (with value ∼2.69 fN∕mW).

In order to identify the possible range of sizes that might be
easier to sort with the quasi-CP compound mode, we per-
formed the study of the chiral force’s dependence on the par-
ticle’s size at the wavelength of 1310 nm. As shown in Fig. 2(d),

Fig. 3. Field properties (W e , Wm, and Sm) that generate the dominant forces of the quasi-TE mode in a strip waveguide
(0.151 μmwide × 0.139 μm thick) at λ � 405 nm. The force stemming from the Sm as well as the total optical force is represented for both
chiralities of the particle (κ � �0.5). All forces are calculated for a particle of 80 nm radius. The axes of all graphs refer to the x– and y–coordinates
measured in μm units. The arrow map represents the transversal components of the vectorial quantities being plotted, and the colormap represents
the scalar quantity or the z–component of the vectorial quantity being plotted. The particle tracking graph shows the last position of 500 particles per
enantiomer inside the microchannel (3 μmwide × 0.35 μm thick) after 2 s of motion given the total optical force field produced by the waveguide.
The initial x–coordinate of each particle was uniformly randomized between −0.5 and 0.5 μm, and the initial y–coordinate was uniformly ran-
domized with any value within the microchannel. The orange circle represents the particle size to scale, whereas the magenta and green dots represent
the center of mass of the enantiomeric particles.
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the net transversal chiral force (along x– and y–axis) dominates
the net transversal achiral force, up to a maximum size
(378 nm) where the combination of the forces due to the real
and imaginary parts of the Poynting vector and the rotational of
the spin overtake the helicity gradient force. Crucially, this
means that the size range has no minimum radii where the chi-
ral force is smaller than the achiral force, as it occurs for the
quasi-TE mode. This means that we can expect to reach enan-
tioseparation for smaller particles when compared to the TE
mode, even down to radii around 1 nm (molecular size), mak-
ing this force the most promising for sorting molecules. The
particle tracking results inside a microchannel (1.5 μmwide ×
1 μm thick) for the system in Fig. 5 show that 33.2% of the
500 (�)-particles become “attached” to the waveguide within a
radius of 425 nm measured from the center of the waveguide,
and that 90.2% of the 500 (–)-particles are repelled. The
(�)-EF within a radius of 425 nm is 77.2% and the (–)-EF
outside the radius of 425 nm is 57.5%. Particle tracking sim-
ulations assuming optical power above 20 mW, and therefore
stronger forces, suggest that the (�)-EF and (–)-EF increase
with power injected into the mode yielding 94.5% and
77.9% for 50 mW and 99.6% and 97.3% for 100 mW.

Enantioseparating forces depend on the chirality parameter κ,
as shown in Eq. (6), which we have considered to be κ � �0.5.
However, the chiral parameter might be much lower for realistic
particles such as molecules. We have computed the modulus
of the chiral and achiral forces depending on κ for both the

quasi-TE [Fig. 6(a)] and quasi-CP [Fig. 6(b)] modes. The results
suggest that particles with κ > 0.21 (κ > 0.19) can be sorted
under quasi-TE (quasi-CP) mode operation. Other configura-
tions are needed to achieve the separation of particles with lower
chirality. This will be explored in future work.

6. CONCLUSIONS

In conclusion, we have identified an opportunity for transversal
enantioseparation via optical forces in photonic integrated
waveguides of high-chirality particles utilizing distinct mecha-
nisms depending on particle size and operating wavelength. To
this end, we have used the most straightforward waveguide
structure: a strip SiN waveguide placed on a silica substrate.
At short wavelengths (405 nm), the spin magnetic force arising
from a quasi-TE mode is strong enough to sort particles of
80 nm radius in less than 2 s. At longer wavelengths (1310 nm),
the helicity gradient force stemming from a quasi-CP mode can
separate particles of radius as small as 52 nm radius under time
spans below 2 s. In contrast to other approaches using optical
waveguides [17–19], our waveguides are longitudinally invari-
ant, meaning that the optical chiral forces could be exerted over
long distances (cm-scale), thus facilitating practical enantiose-
paration with realistic optical powers in the chip (20 mW).
These findings highlight the potential of optical forces gener-
ated in integrated waveguides in facilitating enantioseparation
within the specified parameters of high chirality, particle size,
and wavelength.

APPENDIX A: PARTICLE TRACKING
ALGORITHM

The motion for a Brownian particle immersed in a fluid and
subjected to a (optical) force field F � �Fx , Fy, Fz� is governed
by the Langevin equation [39]

m
d2x
dt2

� − γ
dx
dt|{z}

friction

� F|{z}
optical

� γ
ffiffiffiffiffiffi
2D

p
ξ�t�|fflfflfflfflfflffl{zfflfflfflfflfflffl}

stochastic

: (A1)

This equation can be integrated by iteratively calculating the
displacements over successive time intervals Δt . If the time step
is larger than the momentum relaxation time τ � m∕γ,
i.e., Δt ≫ τ, the previous equation simplifies to the so-called
overdamped Langevin equation [30,39]

0 � −γ
dx
dt

� F � γ
ffiffiffiffiffiffi
2D

p
ξ�t�, (A2)

whose solution can be given by the Euler-Maruyama integra-
tion scheme [31,32] to track the location of the particle in
time:

x�m�1� � x�m� �M�m�
x,⊥F

�m�
x Δt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�m�

x,⊥kBTΔt
q

Nx�0,1�,

y�m�1� � y�m� �M�m�
y,⊥F

�m�
y Δt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�m�

y,⊥ kBTΔt
q

Ny�0,1�,

z�m�1� � z�m� �M�m�
z,jj F

�m�
z Δt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M�m�

z,jj kBTΔt
q

Nz�0,1�,
(A3)

Fig. 4. Total optical force (transversal in arrowmap, and longitudinal
in colormap) that a quasi-TE mode in a wide strip waveguide
(2.270 μmwide × 0.139 μm thick) at λ � 405 nm exerts on an 80 nm
radius particle is shown for both chiralities of particle κ� 0.5. The
particle tracking graph shows the last position of 500 particles per enan-
tiomer inside the microchannel (3 μmwide × 0.35 μm thick) after 2 s
of motion given the total optical force field shown in the same figure.
The initial x–coordinate of each particle was uniformly randomized be-
tween −0.5 and 0.5 μm, and the initial y–coordinate was uniformly ran-
domized with any value within the microchannel. The orange circle
represents the particle size to scale, whereas the magenta and green dots
represent the center of mass of the enantiomeric particles.
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where N �0,1� represents a standard normal distribution with
0–mean and 1–variance, and the force field F is evaluated at the
location of the particle (x�m�, y�m�, z�m�) at each instant of time.
The time step used in all our particle tracking simulations is
Δt � 10 μs. Let us compare this value with the momentum
relaxation time for a material with a similar permittivity to
the one considered in the main text for the particles, SiO2

(ρSiO2
� 2650 kg∕m3, εp ∼ 2), within the size range consid-

ered in this work (r ∼ 80 nm):

Δt ≫ τ � m
γ
� ρSiO2

4
3 πr

3

6πηr
� 2ρSiO2

r2

9η
∼ 2.4 ns: (A4)

Our choice of Δt � 10 μs ≫ 2.4 ns fulfils this require-
ment. The mass of the particles is so small that in practice,
one can consider that they lack inertia and the velocity is con-
stant over Δt. The upper bound on the time step is chosen so
that the particle moves one-pixel distance as maximum. In our
case, the spatial resolution was Δxmin � 10 nm, and the

Fig. 5. Field properties (W e ,Wm and G) that generate the dominant forces of the quasi-CP mode in a strip waveguide (0.495 μmwide ×
0.450 μm thick). The force stemming from the gradient of G as well as the total force is represented for both chiralities of the particle
(κ � �0.5). All forces are calculated for a particle of 52 nm radius. The arrow map represents the transversal components of the vectorial quantities
being plotted, and the colormap represents the scalar quantity or the z–component of the vectorial quantity being plotted. The particle tracking
graph shows the last position of 500 particles per enantiomer inside the microchannel (1.5 μmwide × 1 μm thick) after 2 s of motion given the total
optical force field produced by the waveguide. The initial x–coordinate of each particle was uniformly randomized between −0.5 and 0.5 μm, and the
initial y–coordinate was uniformly randomized with any value within the microchannel. The orange circle represents the particle size to scale,
whereas the magenta and green dots represent the center of mass of the enantiomeric particles.
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maximum value of the force for the quasi-TE mode was 93 fN
(20 mW) for an 80 nm particle; therefore, this upper bound is

Δt ≪
Δxminγ

max jF j ∼ 162 μs, (A5)

which is also fulfilled by our choice of time step. An identical
argument would follow for the quasi-CP mode.

The mobility coefficients are modified from the bulk value
M to account for the hydrodynamic interaction between the
particle and the enclosing boundaries. The modifications are
different depending on whether the particle moves along the
directions parallel (jj) or perpendicular (⊥) to a non-slip planar
boundary [33]:
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where h is the distance from the center of the particle to the
wall, and r is the radius of the spherical particle. We used the
⊥–correction for the x– and y–directions and the jj–correction
for the z–direction. We do not allow the particles to come
closer than a radius distance from the wall, i.e., h ≥ r. This
bounds the values of r∕h between zero and one, and therefore,
M⊥ ∈ �M∕4,M	,Mjj ∈ �M∕2,M	. These modified coeffi-
cients are obtained for the case of a particle moving near a single
planar boundary. However, in our waveguide system, we have
multiple boundaries, defined by the ceiling and sidewalls of the
microchannel as well as the top and sidewalls of the waveguide
core and top of the substrate. We assume the modified expres-
sions are still valid. We use the M⊥ expression for calculating
the mobility coefficient along x– and y–directions, and use the
Mjj expression along z−direction. We take h as the distance to
the nearest boundary in the direction of motion. For instance,
for the calculation of My,⊥ we compute h by measuring the
distance from the particle position to the ceiling of the micro-
channel and compare it to the distance to the substrate or top
of the waveguide core (depending on whether the particle’s

position is above the substrate or above the waveguide core).
Whichever distance is shorter, that is the value of h.

The force field used in the algorithm is obtained for a system
that is not enclosed by a microchannel. However, we assume
the presence of the microchannel does not modify the guided
modes, and thus, the force field produced by the waveguide
throughout the surrounding medium (water, n � 1.33).
This approximation is valid due to the higher refractive index
of the waveguide core (SiN, n ∼ 2) with respect to that of the
microchannel material (SiO2, n ∼ 1.45), which ensures the
guidance of the mode along the core, and because the micro-
channel walls (boundaries) are separated by a distance ≥λ∕1.33
from the waveguide walls.

Once the particle tracking simulation is finished, we do stat-
istical analysis with the last positions of the 500 particles for
both enantiomers, to compute the enantiomer fraction.
Given the number of (�)-particles, N�, and the number of
(–)-particles, N −, inside a region of space, we define the enan-
tiomer fraction (EF) as [40]

���-EF � N�
N� � N −

, �−�-EF � N −

N� � N −
: (A7)

Since the chiral forces separate opposite enantiomers in op-
posite directions, the (�)-EF and the (–)-EF are calculated in
different regions of space. For instance, for the quasi-TE mode,
the (�)-EF is calculated for the region x < 0, whereas the
(–)-EF is obtained for the region x > 0. And, for the quasi-
CP mode, the (�)-EF is calculated for the region
x2 � y2 < R2 whereas the (–)-EF is obtained for x2 � y2 > R2,
where R is an arbitrary radius that defines a circular region from
the center of the waveguide.

APPENDIX B: SORTING TIME FOR A CLOUD OF
ENANTIOMERS IN A FLUID

We derive the expression for calculating the time needed for a
chiral optical force, F , to separate two clouds of opposite enan-
tiomers with a distance Δx. This has been previously done by
Kravets et al. [28], but we include it here for completeness. The
chiral force (uniform in space and constant in time) moves each

Fig. 6. Net chiral and achiral forces exerted on a particle depending on its chirality parameter κ for (a) quasi-TE mode (λ � 405 nm) along the
x–direction and particle size r � 80 nm and (b) quasi-CP mode (λ � 1310 nm) and particle size of r � 52 nm. The limit where the achiral force
becomes stronger than the chiral force is at κ � 0.21 for the quasi-TE mode and κ � 0.19 for the quasi-CP mode. The forces were evaluated in the
same position as in Figs. 2(c) and 2(d).
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enantiomer cloud into opposite directions a distance d opt from
their initial position,

d opt �
F
γ
t, (B1)

where γ is the friction coefficient of the particle motion in the
fluid. Let us assume the chiral force moves the ���-enantiomer

cloud towards the left (−x direction) and the (–)-enantiomer
cloud towards the right (�x direction), following the Fig. 1(a)
schematic. Therefore, the separation between the center of
mass of both clouds has increased 2d opt. In addition to this
displacement, the radius for each enantiomer cloud is expected
to increase on average an extra distance dB from its initial ex-
tension L0∕2 due to Brownian motion:

Quasi-TE mode (TE0)
λ=405 nm

E-field

Guided modes in a strip waveguide

H-field

Quasi-CP mode (TE0+i·TM0)
λ=1310 nm

Quasi-TM mode (TM0)
λ=405 nm

Fig. 7. Electric and magnetic field patterns of the guided modes discussed in the main text for a strip waveguide. The fields are split into the
transversal (⊥) and longitudinal (z) components. The transversal components of the TE0 and TM0 modes lack an imaginary part, whereas the quasi-
CP mode does due to the circular polarization of the mode induced by the phase delay of 90°.
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dB �
ffiffiffiffiffiffiffiffi
2Dt

p
, (B2)

where D � kBT ∕γ is the diffusion coefficient, kB is the
Boltzmann constant, and T is the absolute temperature of the
fluid. These two simultaneous processes of motion are schema-
tized in Fig. 1, where by comparing the defined lengths one can
see that the condition to achieve a separation of Δx in a sorting
time t is given by

2d opt � L0 � 2dB � Δx, (B3)

2
F
γ
t � L0 � 2

ffiffiffiffiffiffi
2D

p ffiffi
t

p � Δx: (B4)

This equation can be solved as a second-degree equation on
the variable

ffiffi
t

p
, whose solution is
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where we have taken the positive square root solution for avoid-
ing unphysical negative time. By squaring this last expression
and substituting D � kBT ∕γ and γ � 6πηr, the sorting time
can be obtained:

t sort � 3πηkBT
r
F 2

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� F �L0 � Δx�

kBT

s !2

: (B6)

Note that no dipolar approximation is needed to derive this
equation since we do not require the expression of the force.

APPENDIX C: ELECTRIC AND MAGNETIC
FIELDS OF THE GUIDED MODES

The decomposition of the electric and magnetic fields for the
quasi-TE, quasi-TM, and quasi-CP modes can be found
in Fig. 7.
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